# 196. Photochemische Reaktionen

112. Mitteilung [1]

# Zur Photochemie $\alpha$ , $\beta$ -ungesättigter $\gamma$ , $\delta$ -Epoxyester. III. Ergänzende Untersuchungen zur Triplettreaktivität

von Kazuo Murato, Bruno Frei, Wolfhard Bernd Schweizer<sup>1</sup>), Hans Richard Wolf und Oskar Jeger

Organisch-chemisches Laboratorium der Eidgenössischen Technischen Hochschule, CH-8092 Zürich

(13.V1II.80)

### Photochemistry of $\alpha,\beta$ -Unsaturated $\gamma,\delta$ -Epoxyesters. III. Experiments on Triplet Reactivity

## Summary

On triplet sensitization (E)-5 gives (Z)-5 and isomerizes via  $C(\delta)$ , O-bond cleavage to the cyclobutanone 6 and the conjugated  $\gamma$ -ketoester 7. – On singulet excitation 6 undergoes decarbonylation and yields the bicyclo [4.1.0]heptane 8. However, on triplet sensitization 6 is converted to the isomeric tricyclononane 9 by a stereospecific oxa-di- $\pi$ -methane rearrangement. The structure of 9 is determined by X-ray analysis of the p-nitrobenzoate 15: a = 10.573, b = 14.707, c = 13.494 Å,  $\beta = 112.40^\circ$ ,  $P2_1/n$ , Z = 4.

1. Einleitung. – Den Ergebnissen der voranstehenden Arbeit zufolge erfahren  $a,\beta$ -ungesättigte  $\gamma,\delta$ -Epoxyester vom Typus 1 (s. Schema 1) bei der Triplettanregung neben der (E/Z)-Isomerisierung selektiv Photospaltung der  $C(\gamma)$ , O-Bindung  $(1 \rightarrow a)$  und Umwandlung zu isomeren Dihydrofuranen vom Typus 2 bzw. zu Ketoestern vom Typus 3 und 4 [1]. Parallel zu diesen Untersuchungen wurde seinerzeit der 1 entsprechende  $\varepsilon$ -Methyliden-epoxyester (E)-5 bestrahlt und gezeigt, dass seine Photochemie gänzlich verschieden ist [2]. So konnte bei der Triplettanregung von (E)-5 eine zu  $1 \rightarrow a$  analoge Photospaltung nicht nachgewiesen werden. Neben der Isomerisierung zu (Z)-5 wurde lediglich die Umwandlung zum isomeren Vierringketon 6 beobachtet [2].

In der vorliegenden Arbeit wurden die Versuche zur Triplettsensibilisierung von (E)-5 nochmals aufgenommen und die Photochemie des in der Substratreihe  $a,\beta$ -ungesättigter  $\gamma,\delta$ -Epoxycarbonylverbindungen strukturell neuartigen Photoisomers 6 (vgl. [3] [4]) untersucht.

<sup>1)</sup> Forschungsgruppe für chemische Kristallographie.



**2. Bestrahlungsversuche.** – 2.1. *Triplettanregung von* (E)-5. Die Photolyse von 200 ml einer 0,032 molaren Lösung von (E)-5 [2] in Aceton ( $\lambda \ge 280$  nm) ergab bei 88proz. Umsatz 13% (Z)-5 [2], 22% 6 [2] und ca. 3% 7<sup>2</sup>) (s. Schema 2).

2.2. Singulettanregung von 6. Aus der Photolyse von 40 ml einer 0,018 molaren Lösung von 6 in Acetonitril wurde bei vollständigem Reaktantumsatz ( $\lambda \ge 280$  nm) neben Polymeren die Dreiringverbindung 8 (30%) erhalten (s. Schema 2).

2.3. Triplettanregung von 6. Die Photolyse ( $\lambda \ge 280$  nm) von 50 ml einer 0,019 molaren Lösung von 6 in Aceton ergab bei 92proz. Umsatz neben Polymeren das Isomer 9 (32%; s. Schema 2).



<sup>2</sup>) Die Produktverteilung ist abzüglich der Menge an wiedergewonnenem Reaktant angegeben.

3. Struktur der Photoprodukte. – 3.1.  $\gamma$ -Ketoester 7. Den NMR.-Spektren zufolge stellt 7 ein (1:1)-Gemisch von Isomeren dar, die sich in der Konfiguration der exocyclischen Doppelbindung unterscheiden (s. exper. Teil). Für die H-Atome des Enonsystems wird bei 6,18 ppm ein *AB*-System beobachtet ( $\delta_A = 5,85$ ,  $\delta_B = 6,50$  ppm), das eine für (Z)-Enone charakteristische Kopplungskonstante von J=12 Hz aufweist. Die UV.-Absorptionsbanden bei 230 nm ( $\varepsilon = 12000$ ) und 289 nm ( $\varepsilon = 5500$ ) wie auch die intensiven IR.-Schwingungsbanden bei 1732, 1672, 1643 und 1605 cm<sup>-1</sup> weisen auf das Vorliegen des angenommenen Ketoestersystems hin. Dem Strukturvorschlag 7 entsprechend treten im <sup>13</sup>C-NMR.-Spektrum die tertiären olefinischen C-Atome als *d* bei 122,2 bzw. 122,4 und 145,2 bzw. 145,5 ppm auf. Für die Carbonyl- bzw. die Carboxylgruppe erscheinen zwei *s* bei 195,4 und 195,5 ppm bzw. zwei *s* überlagert bei 165,7 ppm (bzgl. der übrigen Daten s. exper. Teil). Schliesslich wurde die Ketoesterverbindung 7 mittels Ozonolyse zu 3,3-Dimethylcyclopentanon (10) [5] (s. Schema 2) abgebaut.

3.2. Bicyclo [4.1.0] heptan-Derivat 8. Der konjugierte Cyclopropylcarbonsäureester weist im IR.-Spektrum eine Carboxylschwingungsbande bei 1728 cm<sup>-1</sup> auf. Das Vorliegen des Cyclopropylsystems wird durch die NMR.-Daten belegt. So erscheinen die H-Atome bei 1,50 ppm als AB-System ( $\delta_A = 1,42$ ,  $\delta_B = 1,57$  ppm) mit einer Kopplungskonstanten von J = 6 Hz, deren Grösse auf eine trans-Anordnung der Cyclopropylwasserstoffatome hinweist. Für die Kohlenstoffatome des Dreiringes treten im <sup>13</sup>C-NMR.-Spektrum je ein d bei 29,6 und 41,4 ppm und ein s bei 28,8 ppm auf (bzgl. der übrigen strukturbelegenden Daten s. exper. Teil). Zur weiteren Strukturbestätigung wurde der Ester 8 mittels LiAlH<sub>4</sub>-Reduktion in den Alkohol 11 (67%; s. Schema 2) übergeführt, dessen spektralanalytischen Daten (s. exper. Teil) mit der Struktur 11 im Einklang stehen.

3.3. Tricyclo  $[3.3.1.0^{1.3}]$ nonan-Derivat 9. Die Konstitution von 9 konnte anhand der UV.-, IR.-, NMR.- und MS.-Daten nicht eindeutig abgeleitet werden. Die aus der Spektralanalyse erhaltenen Parameter gaben Hinweise, dass 9 ein Produkt mit hoher Ringspannung ist und liessen erwarten, dass Versuche zur chemischen Strukturaufklärung mit Gerüstumlagerung verbunden sein würden. Es zeigte sich jedoch, dass 9 unter Beibehaltung des Kohlenstoffgerüstes<sup>3</sup>) mit NaBH<sub>4</sub> in Methanol bei – 15° zu den Alkoholen 12 (47%), 13 (14%) und 14 (11%) reduziert werden kann (s. Schema 2). Aber auch die spektralanalytischen Daten der Reduktionsprodukte erlaubten keinen eindeutigen Rückschluss auf die Struktur 9. In der Folge wurde daher der Hydroxyester 12 mit p-Nitrobenzoylchlorid in das kristalline Derivat 15 (83%; s. Schema 2) übergeführt und dieses röntgenographisch untersucht<sup>4</sup>).

# Röntgenstrukturanalyse von 15.

Die Kristalle von 15 sind monoklin, der Raumgruppe  $P_{2_1/n}$ , mit den Zelldimensionen: a=10,573 (13), b=14,707 (11), c=13,494 (9) Å,  $\beta=112,40$  (7)°, Z=4. Die Intensitäten wurden auf einem CAD-4 (*Enraf* Nonius) Diffraktometer gemessen (MoK<sub>a</sub>-Strahlung,  $\lambda=0,71069$  Å, Graphit-Monochromator). Die Struktur wurde durch direkte Methoden gelöst und nach dem Verfahren der kleinsten Fehlerquadrate verfeinert [6] [7]. Die Lagen der H-Atome wurden gegen Ende der Verfei-

<sup>&</sup>lt;sup>3</sup>) Dieser Befund folgt aus dem Vergleich der NMR.-Daten (s. exper. Teil).

<sup>4)</sup> Wir danken Herrn Prof. J. D. Dunitz für seine Unterstützung bei diesen Messungen.

Tabelle 1. Kristallkoordinaten (×10<sup>4</sup>) und Vibrationstensorkomponenten (×10<sup>4</sup>) von 15. Die Standardabweichungen sind in Klammern angegeben in Einheiten der letzten angegebenen Stelle. Der Temperaturfaktor ergibt sich für die Atome C, N und O aus:  $T = \exp[-2\pi^2(U_{11}h^2a^{*2} + \cdots 2U_{12}hka^* \cdot b^* \cdots)]$  und für Wasserstoffatome aus:  $T = \exp(-8\pi^2 U \sin^2 \theta / \lambda^2)$ 

|                | x           | у                    | z                    | $U_{II}/U$           | U <sub>22</sub>        | U33                    | <i>U</i> <sub>12</sub> | U <sub>I3</sub> | U23                 |
|----------------|-------------|----------------------|----------------------|----------------------|------------------------|------------------------|------------------------|-----------------|---------------------|
| C(1)           | 1048 (3)    | - 2288 (2)           | 6651 (3)             | 558 (17)             | 451 (15)               | 848 (21)               | - 54 (14)              | 137 (16)        | -9(15)              |
| C(2)           | 6356 (3)    | 209 (3)              | 7775 (3)             | 463 (17)             | 1309 (31)              | 874 (23)               | - 294 (20)             | 213 (16)        | 107 (22)            |
| C(1')          | 1614 (2)    | -8(2)                | 8324 (2)             | 413 (14)             | 421 (14)               | 415 (13)               | -32(11)                | 89 (11)         | -18(11)             |
| C(2')          | 2947 (3)    | 395 (2)              | 9046 (2)             | 500 (15)             | 568 (17)               | 442 (14)               | -61(13)                | 52 (12)         | 3 (13)              |
| C(3')          | 2936 (2)    | - 539 (2)            | 8569 (2)             | 372 (13)             | 448 (15)               | 434 (14)               | -40(11)                | 77 (11)         | 47 (12)             |
| C(4')          | 2997 (2)    | - 729 (2)            | 7469 (2)             | 329 (12)             | 404 (13)               | 499 (14)               | 17 (11)                | 106 (11)        | 43 (11)             |
| C(5')          | 1497 (2)    | - 594 (2)            | 6690 (2)             | 368 (13)             | 457 (14)               | 371 (13)               | -6(11)                 | 93 (10)         | 44 (11)             |
| C(6')          | 478 (2)     | - 1349 (2)           | 6736 (2)             | 350 (13)             | 425 (14)               | 484 (14)               | -43 (11)               | 75 (11)         | 2 (12)              |
| C(7')          | 140 (3)     | -1335 (2)            | 7766 (2)             | 571 (17)             | 764 (20)               | 662 (18)               | - 298 (16)             | 256 (14)        | - 87 (16)           |
| C(8′)          | 451 (3)     | - 482 (2)            | 8480 (2)             | 473 (16)             | 668 (18)               | 477 (15)               | -6(13)                 | 182 (12)        | 19 (13)             |
| C(9')          | 1239 (2)    | 282 (2)              | 7163 (2)             | 307 (12)             | 400 (13)               | 451 (13)               | 21 (10)                | 63 (10)         | 63 (11)             |
| C(10′)         | 3382 (3)    | - 1303 (2)           | 9372 (2)             | 524 (16)             | 644 (18)               | 523 (15)               | 42 (14)                | 77 (13)         | 160 (14)            |
| C(11')         | 4002 (2)    | - 149 (2)            | 7209 (2)             | 382 (13)             | 530 (15)               | 514 (15)               | - 19 (12)              | 134 (12)        | 20 (13)             |
| C(12')         | 842 (3)     | - 1252 (2)           | 5732 (2)             | 472 (16)             | 585 (18)               | 676 (18)               | - 127 (14)             | 0 (14)          | - 30 (15)           |
| C(1")          | - 369 (2)   | 1490 (2)             | 6757 (2)             | ` <u>388 (15)</u>    | 455 (16)               | 445 (14)               | 38 (12)                | 132 (12)        | 42 (12)             |
| C(2")          | - 1801 (2)  | 1764 (2)             | 6086 (2)             | 352 (13)             | 491 (16)               | 447 (13)               | 23 (11)                | 138 (11)        | 47 (12)             |
| C(3")          | -2807 (3)   | 1139 (2)             | 5561 (2)             | 417 (15)             | 501 (16)               | 702 (18)               | 44 (13)                | 137 (13)        | 75 (14)             |
| C(4″)          | -4101 (3)   | 1418 (2)             | 4922 (2)             | 403 (16)             | 718 (21)               | 664 (18)               | - 27 (15)              | 93 (13)         | - 22 (16)           |
| C(5″)          | -4366 (3)   | 2325 (2)             | 4797 (2)             | 388 (14)             | 728 (20)               | 475 (16)               | 135 (14)               | 155 (12)        | 88 (14)             |
| C(6")          | - 3398 (3)  | 2965 (2)             | 5315 (2)             | 498 (17)             | 570 (18)               | 756 (19)               | 168 (15)               | 197 (15)        | 74 (15)             |
| C(7")          | -2113(3)    | 2679 (2)             | 5959 (2)             | 449 (16)             | 499 (16)               | 704 (18)               | 48 (13)                | 108 (14)        | -31(14)             |
| N(1")          | - 5739 (3)  | 2626 (2)             | 4070 (2)             | 465 (15)             | 994 (23)               | 642 (17)               | 200 (17)               | 184 (13)        | 140 (16)            |
| 0(1)           | 5273 (2)    | - 297 (1)            | 7925 (2)             | 338 (10)             | 914 (15)               | 733 (12)               | - 97 (10)              | 127 (9)         | 172 (11)            |
| 0(2)           | 3759 (2)    | 371(1)               | 6484 (2)             | 574 (12)             | 893 (15)               | 756 (13)               | -91(11)                | 202 (10)        | 315 (12)            |
| 0(1")          | - 159 (2)   | 607(1)               | 6645 (1)             | 320 (8)              | 409 (10)               | 559 (10)               | 31 (7)                 | 43 (7)          | 27 (8)              |
| O(2'')         | 490 (2)     | 2004 (1)             | 7306 (2)             | 413(10)              | 493 (11)               | 830 (13)               | -21(9)                 | 23 (10)         | -116(10)            |
| O(3")<br>O(4") | - 6534 (2)  | 3429 (2)<br>2049 (2) | 4011 (2)<br>3537 (2) | 473 (17)<br>473 (14) | 1149 (22)<br>1309 (23) | 1003 (18)<br>1036 (19) | - 46 (15)              | -11(13)         | 93 (16)<br>157 (17) |
| H(2,1)         | 7110 (37)   | 90 (25)              | 8403 (28)            | 1185 (120            | )                      |                        |                        |                 |                     |
| H(2,2)         | 6127 (42)   | 812 (28)             | 7540 (31)            | 1376 (137            | )                      |                        |                        |                 |                     |
| H(2,3)         | 6428 (37)   | 22 (27)              | 7143 (29)            | 1262 (129            | )                      |                        |                        |                 |                     |
| H(2',1)        | 3225 (23)   | 884 (16)             | 8752 (17)            | 518 (68)             |                        |                        |                        |                 |                     |
| H(2',2)        | 3210 (23)   | 361 (15)             | 9789 (17)            | 485 (66)             |                        |                        |                        |                 |                     |
| H(4')          | 3335 (22)   | - 1312 (15)          | 7466 (17)            | 468 (62)             |                        |                        |                        |                 |                     |
| H(5')          | 1441 (19)   | - 545 (13)           | 5982 (15)            | 314 (53)             |                        |                        |                        |                 |                     |
| H(7′,1)        | 658 (43)    | - 1850 (27)          | 8256 (31)            | 1384 (141            | )                      |                        |                        |                 |                     |
| H(7′,2)        | - 710 (30)  | - 1484 (19)          | 7608 (21)            | 787 (88)             |                        |                        |                        |                 |                     |
| H(8′,1)        | 697 (21)    | -631 (14)            | 9317 (16)            | 375 (57)             |                        |                        |                        |                 |                     |
| H(8',2)        | - 364 (28)  | - 62 (18)            | 8325 (21)            | 730 (81)             |                        |                        |                        |                 |                     |
| H(9′)          | 1871 (26)   | 804 (17)             | 7063 (19)            | 679 (77)             |                        |                        |                        |                 |                     |
| H(10',1)       | 3001 (31)   | – 1937 (20)          | 9034 (23)            | 884 (95)             |                        |                        |                        |                 |                     |
| H(10',2)       | 3073 (29)   | - 1160 (20)          | 9957 (21)            | 818 (90)             |                        |                        |                        |                 |                     |
| H(10′,3)       | 4327 (28)   | - 1335 (18)          | 9612 (20)            | 714 (80)             |                        |                        |                        |                 |                     |
| H(11′,1)       | 1769 (28)   | - 2464 (17)          | 7293 (21)            | 752 (86)             |                        |                        |                        |                 |                     |
| H(11',2)       | 1232 (37)   | -2347 (24)           | 5925 (30)            | 1218 (126            | )                      |                        |                        |                 |                     |
| H(11′,3)       | 409 (27)    | -2731 (17)           | 6638 (20)            | 623 (73)             |                        |                        |                        |                 |                     |
| H(12',1)       | - 1301 (33) | - 680 (23)           | 5716 (24)            | 958 (102             | )                      |                        |                        |                 |                     |
| H(12',2)       | - 1406 (26) | - 1720 (17)          | 5706 (19)            | 592 (73)             |                        |                        |                        |                 |                     |
| H(12',3)       | - 629 (42)  | - 1314 (29)          | 5046 (30)            | 1451 (153            | )                      |                        |                        |                 |                     |
| H(5")          | - 2595 (24) | 516(16)              | 5681 (18)            | 530 (67)             |                        |                        |                        |                 |                     |
| FI(4″)         | - 4824 (27) | 995 (18)             | 45/2 (20)            | 693 (80)             |                        |                        |                        |                 |                     |
| H(0")          | - 3613 (26) | 3592 (18)            | 51/9(19)             | 664 (77)             |                        |                        |                        |                 |                     |
| n(/")          | - 1452 (26) | 3105 (17)            | 6331 (19)            | 005 (79)             |                        |                        |                        |                 |                     |

nerung aus einer  $F_o$ - $F_c$  Fouriersynthese entnommen und in den letzten Zyklen mitverfeinert (C-, Nund O-Atome mit anisotropen, H-Atome mit isotropen Temperaturparametern). Dabei wurden die Reflexe mit  $w = \sigma^{-1} \cdot (F_o) \cdot \exp(A \cdot \sin^2 \theta / \lambda^2)$  [8] gewichtet (A = 6). Konvergenz wurde bei R = 0,039( $R_w = 0,043$ ) erreicht.

Die verfeinerten Atomparameter sind in *Tabelle 1* angegeben. *Tabelle 2* zeigt Bindungslängen und Bindungswinkel. *Figur 1* stellt die Stereoprojektion der Molekel dar; *Figur 2* zeigt die Stereoprojektion der Kristallpackung. Der einzige intermolekulare Abstand von weniger als 3,2 Å (ohne H-Atome) besteht zwischen N(1") und O(2") mit 3,16 Å<sup>5</sup>). Im Ringgerüst fällt der grosse Bindungswinkel C(6')-C(7')-C(8') von 120° auf, wobei zu beachten ist, dass C(7') eine relativ grosse Komponente des Vibrationstensors senkrecht zur Ebene der Atome C(6'), C(7'), C(8') aufweist, und somit die angegebene Mittellage von C(7') einen grösseren Winkel vortäuscht.



Fig. 1. ORTEP [9] Stereozeichnung von 15. Die Vibrationsellipsoide schliessen 50% der Elektronendichte ein. Die H-Atome wurden mit Radius 0,1 Å gezeichnet.



Fig. 2. Stereographische Projektion der Kristallpackung von 15 (gezeichnet mit PLUTO [10])

<sup>5)</sup> Numerierung der Atome gemäss Angaben in Figur 1.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Å         |                 | Å         |                          | Grad      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-----------|--------------------------|-----------|
| C(1) - C(4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,504 (4) | C(9')-O(1'')    | 1,455 (3) | C(4')-C(1)-O(1)          | 110.1 (2) |
| C(1) - O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,340 (3) | C(1'') - C(2'') | 1,494 (3) | C(4')-C(1)-O(2)          | 127,3 (2) |
| C(1) - O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,190 (3) | C(1'') - O(1'') | 1,336 (3) | O(1) - C(1) - O(2)       | 122.7 (3) |
| C(2) - O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,443 (4) | C(1")O(2")      | 1,196 (3) | C(2') - C(1') - C(3')    | 60,2 (2)  |
| C(1') - C(2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,497 (3) | C(2'') - C(3'') | 1,380 (3) | C(2') - C(1') - C(8')    | 135,5 (2) |
| C(1') - C(3')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,523 (4) | C(2")C(7")      | 1,381 (4) | C(2') - C(1') - C(9')    | 111,7 (2) |
| C(1') - C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,496 (4) | C(3")C(4")      | 1,372 (4) | C(3')-C(1')-C(8')        | 117,8 (2) |
| C(1')-C(9')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,523 (3) | C(4")-C(5")     | 1,360 (4) | C(3')-C(1')-C(9')        | 102,9 (2) |
| C(2')C(3')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,515 (4) | C(5")-C(6")     | 1,370 (4) | C(8')-C(1')-C(9')        | 111,7 (2) |
| C(3')C(4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,536 (4) | C(5'') - N(1'') | 1,476 (3) | C(1')-C(2')-C(3')        | 60,7 (2)  |
| C(3')~C(10')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,507 (4) | C(6")-C(7")     | 1,370 (4) | C(1')-C(3')-C(2')        | 59,1 (2)  |
| C(4')~C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,546 (3) | N(1")~O(3")     | 1,208 (5) | C(1')-C(3')-C(4')        | 104,9 (2) |
| C(5')-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,565 (4) | N(1")-O(4")     | 1,217 (4) | C(1')-C(3')-C(10')       | 123,2 (3) |
| C(5')C(9')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,508 (4) |                 |           | C(2')-C(3')-C(4')        | 125,5 (2) |
| C(6')~C(7')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,561 (4) |                 |           | C(2')-C(3')-C(10')       | 114,9 (2) |
| C(6')-C(11')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,528 (4) |                 |           | C(4')-C(3')-C(10')       | 116,2 (2) |
| C(6')-C(12')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,538 (3) |                 |           | C(1)-C(4')-C(3')         | 114,5 (2) |
| C(7')-C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,539 (4) |                 |           | C(1)-C(4')-C(5')         | 113,7 (2) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Grad            |           |                          | Grad      |
| C(3')-C(4')-C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 102,9 (2)       |           | C(1")-C(2")-C(3")        | 122,5 (2) |
| C(4') - C(5') - C(5' | C(6')     | 115,2 (2)       |           | C(1'')-C(2'')-C(7'')     | 118,5 (2) |
| C(4') - C(5') - C(5' | C(9′)     | 97,2 (2)        |           | C(3'')-C(2'')-C(7'')     | 119,0 (2) |
| C(6')-C(5')-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(9')     | 110,6 (2)       |           | C(2")-C(3")-C(4")        | 120,8 (3) |
| C(5')-C(6')-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(7')     | 114,8 (2)       |           | C(3")-C(4")-C(5")        | 118,7 (2) |
| C(5')-C(6')-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(11')    | 110,0 (2)       |           | C(4")-C(5")-C(6")        | 122,1 (2) |
| C(5')-C(6')-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(12')    | 107,8 (2)       |           | C(4'')-C(5'')-N(1'')     | 118,7 (2) |
| C(7')-C(6')-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(11')    | 108,0 (2)       |           | C(6")-C(5")-N(1")        | 119,2 (2) |
| C(7')-C(6')-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(12')    | 110,1 (2)       |           | C(5")-C(6")-C(7")        | 118,6 (3) |
| C(11')-C(6')-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(12′)    | 105,7 (2)       |           | C(2")-C(7")-C(6")        | 120,7 (2) |
| C(6')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7')-C(7' | C(8')     | 120,1 (3)       |           | C(5")-N(1")-O(3")        | 118,5 (3) |
| C(1')-C(8')-C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(7')     | 106,4 (3)       |           | C(5")-N(1")-O(4")        | 117,8 (3) |
| C(1')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9')-C(9' | C(5')     | 100,2 (2)       |           | O(3'') - N(1'') - O(4'') | 123,7 (3) |
| C(1') - C(9') - C(9' | D(1")     | 113,9 (2)       |           | C(1) - O(1) - C(2)       | 116,5 (2) |
| C(5')-C(9')-O(1'')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 113,1 (2)       |           | C(9')-O(1'')-C(1'')      | 116,6 (2) |
| C(2")-C(1")-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O(1″)     | 115,0 (2)       |           |                          |           |
| C(2'') - C(1'') -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O(2")     | 124,1 (2)       |           |                          |           |

Tabelle 2. Bindungslängen und Bindungswinkel von 15. Standardabweichungen in Klammern in Einheiten der letzten angegebenen Stelle

3. Diskussion. – In Übereinstimmung mit den eingangs erwähnten Versuchsergebnissen [2] ergab der Epoxyester (E)-5 (s. Schemata 1 und 3) bei der Triplettsensibilisierung (Aceton;  $\lambda \ge 280$  nm) neben dem Konfigurationsisomer (Z)-5 [2] als Hauptprodukt das isomere Vierringketon 6 [2]. Daneben konnte erstmals der  $\gamma$ -Ketoester 7 (s. Schema 2) in geringen Mengen erhalten werden. Die Bildung dieses Produktes ist ein weiterer Hinweis<sup>6</sup>) dafür, dass das Epoxid 5 aus dem

124,4 (2)

O(1'')-C(1'')-O(2'')

<sup>&</sup>lt;sup>6</sup>) Bei der triplettinduzierten Photoisomerisierung (E)-5→6 erfolgt Spaltung der C(δ), O-Epoxidbindung und Bindungsschluss zwischen den C(δ)- und C(a)-Atomen (s. Schema 3). Vermutlich wird eine Zwischenstufe b ausgebildet, die sich unter 1,2-Alkylverschiebung (C(δ')→C(β); s. Schema 3) zu 6 stabilisiert (vgl. Diskussion in [2]).





Triplettzustand Spaltung der C( $\delta$ ), O-Bindung erfährt. Im intermediär auftretenden Photoprodukt **c** (s. *Schema* 3) wird sodann die C( $\delta'$ ), C( $\gamma$ )-Bindung gespalten unter Ausbildung der Carbonylfunktion am C( $\gamma$ ) und Bindungsschluss zwischen den C( $\delta'$ )- und C( $\zeta$ )-Atomen<sup>7</sup>).

In Anbetracht des Befundes, dass die Photolyse von (E)-5 in Aceton mit Licht von  $\lambda \ge 280$  nm zu ca. 50% mit dem Auftreten nichtauftrennbarer Gemische hochmolekularer Produkte noch unbekannter Struktur verbunden war, drängte sich die Nachbestrahlung des in 22proz. Ausbeute anfallenden, homokonjugierten Vierringketons 6 auf. Es zeigte sich, dass sich 6 bei der Triplettsensibilisierung stereoselektiv durch eine Oxa-di- $\pi$ -methan-Umlagerung zum Fünfringketon 9 isomerisiert (s. Schema 3). Dieser Modus der triplettinduzierten Photoisomerisierung wird allgemein bei homokonjugierten Cycloalkanonen angetroffen [12] [13], doch wurde unseres Wissens eine solche Umlagerung für  $\beta$ ,  $\gamma$ -ungesättigte Vierringketone noch nicht beschrieben (s. auch [12–15]. Bei der Singulettanregung

<sup>&</sup>lt;sup>7</sup>) Eine zu c analoge Zwischenstufe d tritt vermutlich bei der Photoisomerisierung des (E/Z)-5 entsprechenden ε-Ketoesters (E/Z)-16 (s. Schema 3) auf [11]. Wird der a,β-Enester-Chromophor dieser Substrate mit Licht von λ=254 nm angeregt, so erfolgt offenbar intramolekulare Energieübertragung auf den ε-ständigen Ketonchromophor. Unter Spaltung der C(δ), O-Epoxidbindung wird die Zwischenstufe d ausgebildet<sup>8</sup>), die unter 1,2-Alkylverschiebung (C(δ')→C(δ)) zu (E/Z)-17 reagiert.

<sup>&</sup>lt;sup>8</sup>) In Konkurrenz hierzu tritt Photospaltung der  $C(\gamma)$ , O-Bindung ((E/Z)-16  $\rightarrow$  e) auf [11].

 $(\lambda \ge 280 \text{ nm}; \text{CH}_3\text{CN})$  hingegen reagiert 6 unter Decarbonylierung zum Cyclopropylester 8 und stimmt in diesem Verhalten mit demjenigen zahlreicher Vierringketone überein [12] [13]<sup>9</sup>).

Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung sowie der Ciba-Geigy AG, Basel, danken wir für die Unterstützung dieser Arbeit.

#### **Experimenteller** Teil

### Allgemeine Bemerkungen. Vgl. Angaben in [1].

1. Bestrahlungsversuche. - 1.1. Triplettsensibilisierung von (E)-5. Die Lösung von 1,5 g (6,35 mmol) (E)-5 [2] in 200 ml Aceton wurde in der Anordnung I (Lampe B, Pyrexfilter) unter 88proz. Umsatz von (E)-5 bestrahlt, und das Rohprodukt an SiO<sub>2</sub> (Merck, «reinst») in Äther/Hexan 1:4 chromatographiert. Die Auswaage der Fraktionen ergab zusammen mit der <sup>1</sup>H-NMR.-Analyse als Produktenbild: 13% (Z)-5 [2], 22% 6 [2] und ca. 3% 5-(3', 3'-Dimethyl-1'-cyclopentyliden)-4-oxo-2-hexensäure-methylester (7), Reinheit ca. 85%, (1:1)-Gemisch von Diastereomeren, Sdp. 110°/0,05 Torr. - UV. (0,105 mg in 5 ml): 230 (12000), 289 (5500), Endabsorption bis 400. - IR.: 3020w S, 2995m S, 2960s, 2940s, 2905m, 2895m S, 2870m, 1780m, 1760m, 1732s, 1672s, 1643s, 1605s, 1462m, 1447m, 1386s, 1368m, 1305m S, 1290m S, 1280m, 1266m, 1216s, 1185m, 1172s, 1160m, 1140m, 1075m S, 1068m, 1030m, 1002m, 937w, 915w, 903w. - <sup>1</sup>H-NMR.: 0,99, 1,02 (2 s, 2 H<sub>3</sub>C-C(3')); 1,80 (m,  $w_{1/2} = 4$ , 3 H-C(6)); 1,38-1,92  $(m, 2 H-C(4')); 2,10-2,90 (m, 2 H-C(2'), 2 H-C(5')); 3,62 (s, COOCH_3); 6,18 (AB-System, J=12, C(5')); 3,62 (s, COOCH_3); 6,18 (s, CO$  $\delta_A = 5,85, \ \delta_B = 6,50, \ H-C(2), \ H-C(3)). - {}^{13}C-NMR.: 15,58 \ und \ 15,97 \ (2 \ qa, \ C(6)); \ 27,69 \ (2 \ qa, \ C(6)); \ 27,69$ überlagert, 2 H<sub>3</sub>C-C(3')); 51,77 (2 qa, überlagert, COOCH<sub>3</sub>); 33,08 und 33,39, 38,46 und 40,67, 49,21 und 49,56 (6 t, C(2'), C(4'), C(5'); 122,22 und 122,38, 145,23 und 145,52 (4 d, C(2), C(3)); 37,68 und 40,01 (2 s, C(3')); 127,28 und 127,70, 160,76 und 161,12 (4 s, C(5), C(1')); 165,68 (2 s, überlagert,C(1)); 195,38 und 195,50 (2 s, C(4)). - MS.: 236 (M<sup>+</sup>, C<sub>14</sub>H<sub>20</sub>O<sub>3</sub>, 44), 221 (51), 205 (20), 204 (51), 189 (83), 177 (68), 176 (90), 102 (37), 101 (87), 135 (20), 133 (27), 123 (80), 122 (27), 121 (83), 113 (100), 107 (44), 95 (39), 93 (37), 91 (46), 81 (54), 79 (37), 77 (30), 69 (35), 67 (29), 55 (34), 43 (32), 41 (63).

1.2. Photolyse von 6 mit Licht von  $\lambda \ge 280$  nm. Eine Lösung von 192 mg (0,81 mmol) 6 in 40 ml CH<sub>3</sub>CN wurde in der Anordnung I (Lampe B, Pyrex) unter völligem Reaktantumsatz bestrahlt. Die Chromatographie des Rohproduktes an SiO<sub>2</sub> in Hexan/Äther 6:1 ergab 51 mg (30%) (1R\*, 6S\*, 7R\*)-1, 5, 5-Trimethyl-2-methylidenbicyclo[4.1.0]heptan-7-carbonsäure-methylester(8), Sdp. 70°/0,03 Torr. – UV. (0,121 mg in 5 ml): 210 (7840). – IR.: 3090w, 2995m, 2960m, 2945m, 2930m, 2910m S, 2870m, 1728s, 1634m, 1450m, 1438m, 1416w, 1384m, 1365m, 1352m, 1340m, 1327m, 1320m, 1297m, 1275w, 1260w, 1200s, 1169s, 1146m, 1084w, 1070w, 1020w, 959w, 941w, 937w, 925w, 912m, 904m S, 890m, 848w. – <sup>1</sup>H-NMR:: 0,98, 1,10, 1,34 (3 s, H<sub>3</sub>C-C(1), 2 H<sub>3</sub>C-C(5)); 1,10-1,35 (m, 2 H-C(4)); 1,50 (AB-System,  $\delta_A = 1,42$ ,  $\delta_B = 1,57$ , J = 6, H-C(6), H-C(7)); 1,90-2,30 (m, 2 H-C(3)); 3,57 (s, COOCH<sub>3</sub>); 4,88, 4,97 (2 s br., H<sub>2</sub>C=C(2)). – <sup>13</sup>C-NMR: 18,5, 28,8, 29,6 (3 qa, H<sub>3</sub>C-C(1), 2 H<sub>3</sub>C-C(5)); 51,5 (qa, COOCH<sub>3</sub>); 280, 34,6 (2 t, C(3), C(4)); 110,6 (t, H<sub>2</sub>C=C(2)); 29,6, 41,4 (2 d, C(6), C(7)); 28,8, 31,8 (2 s, C(1), C(5)); 148,3 (s, C(2)); 172,7 (s, COOCH<sub>3</sub>). – MS.: 208 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>2</sub>, 26), 194 (20), 193 (38), 179 (35), 177 (21), 165 (24), 162 (35), 161 (44), 152 (29), 149 (44), 147 (54), 139 (62), 136 (38), 134 (51), 133 (65), 125 (18), 121 (44), 119 (56), 107 (53), 105 (53), 93 (100), 91 (71), 77 (38), 69 (29), 53 (21), 41 (47).

# C13H20O2 (208,29) Ber. C 74,96 H 9,68% Gef. C 74,79 H 9,58%

1.3. Triplettsensibilisierung von 6. Eine Lösung von 200 mg (0,85 mmol) 6 in 50 ml Aceton wurde in der Anordnung I (Lampe B, Pyrex) bis zu 92proz. Umsetzung von 6 bestrahlt. Die Chromato-

<sup>&</sup>lt;sup>9</sup>) Die Umwandlung 6→8 findet u.a. eine Parallele in der Photodecarbonylierung der homokonjugierten Cyclobutanone 18 und 19, die in hydroxylfreien Lösungsmitteln bei der Singulettanregung die Cyclopropylverbindungen 20 [16] und 21 [17] ergeben (s. Schema 4).



-



graphie des Rohproduktes an SiO<sub>2</sub> in Äther/Pentan 1:3 lieferte 64 mg (32%) ( $IR^*$ ,  $3S^*$ ,  $4S^*$ ,  $5S^*$ )-3, 6, 6-Trimethyl-9-oxo-tricyclo[3.3.1.0<sup>1,3</sup>]-nonan-4-carbonsäure-methylester (9), Sdp. 135°/0,05 Torr. – UV. (2,8 mg in 2 ml): 295 (37). – 1R.: 2970s, 2940s, 2910m S, 2870m, 2850w, 1765s, 1740s, 1468m, 1460m, 1436m, 1393m, 1385w, 1372m, 1339m, 1325w, 1310w, 1290m, 1280m, 1258m, 1244m, 1220w, 1196m, 1170s, 1158m, 1142m, 1136m, 1101w, 1082w, 1072w, 1050m, 1032m, 1010w, 992w. – <sup>1</sup>H-NMR. (360 MHz, CDCl<sub>3</sub>): 1,12, 1,40 (3 s, 2 s überlagert bei 1,12, 2 H<sub>3</sub>C-C(6), H<sub>3</sub>C-C(3)); 1,30 ( $d\times d$ ,  $J_1 = 6.4$ ,  $J_2 = 2.2$ , H-C(2)); 1,47 ( $d\times d$ ,  $J_1 = 13,2$ ,  $J_2 = 5,1$ , H-C(7)); 1,59 (d, J = 6.4, H-C(2)); 1,71 ( $d\times d\times d$ ,  $J_1 = 13,2$ ,  $J_2 = 11,0$ ,  $J_3 = 7.3$ , H-C(7)); 1,83 ( $d\times d$ ,  $J_1 = 13,7$ ,  $J_2 = 7.3$ , H-C(8)); 2,25 (d, J = 2.2, H-C(4)); 2,43 ( $d\times d\times d$ ,  $J_1 = 13,7$ ,  $J_2 = 11,0$ ,  $J_3 = 5.1$ , H-C(6)); 51,7 (qa, COOCH<sub>3</sub>); 26,9, 29,4, 37,9 (3 t, C(2), C(7), C(8)); 46,7, 68,1 (2 d, C(4), C(5)); 22,9, 41,8, 42,3 (3 s, C(1), C(3), C(6)); 172,7 (s, COOCH<sub>3</sub>); 212,9 (s, C(9)). – MS.: 236 ( $M^+$ , C<sub>14</sub>H<sub>20</sub>O<sub>3</sub>, <1), 221 (3), 208 (30), 193 (30), 180 (11), 176 (10), 165 (21), 161 (34), 152 (20), 149 (77), 139 (18), 133 (52), 123 (15), 121 (62), 107 (46), 105 (29), 95 (22), 93 (100), 91 (48), 83 (25), 77 (34), 69 (30), 55 (20), 41 (38).

#### C<sub>14</sub>H<sub>20</sub>O<sub>3</sub> (236,30) Ber. C 71,16 H 8,53% Gef. C 71,06 H 8,62%

2. Weitere Versuche. – 2.1. Ozonolyse von 7. Eine Lösung von 62 mg (0,26 mmol) 7 in 6 ml CH<sub>2</sub>Cl<sub>2</sub>/Pyridin 5:1 wurde gemäss [18] der Ozonolyse unterworfen. Die Aufarbeitung erfolgte in Äther. Das Rohprodukt wurde an SiO<sub>2</sub> in Äther/Hexan 1:4 chromatographiert, wobei 4 mg (14%) 10 [5] erhalten wurden.

2.2. Reduktion von 8. Unter Eiskühlung wurde zur Vorlage von 38 mg (1 mmol) LiAlH<sub>4</sub> in 2 ml abs. Äther die Lösung von 23,5 mg (0,11 mmol) 8 in 1 ml abs. Äther gegeben. Das Reaktionsgut wurde 20 Min. bei 40° gerührt und in Äther aufgearbeitet. Die Chromatographie des Rohproduktes an SiO<sub>2</sub> in Pentan/Äther 1:1 ergab 13,2 mg (67%) (1R\*,6S\*,7R\*)-1,5,5-Trimethyl-2-methylidenbicyclo [4.1.0] heptan-7-methanol (11), Sdp. 90°/0,01 Torr. - UV. (0,142 mg in 10 ml): 207 (7030). -IR.: 3625m, 3580-3110 br., 3080w, 2955s, 2920s, 2862s, 1630m, 1468m S, 1460m, 1450m, 1382m, 1361m, 1190m, 1148m, 1140m, 1112m, 1078m, 1060m, 1030m, 1010s, 990m S, 965m, 906w, 880m. -<sup>1</sup>H-NMR.: 0,48 (A-Teil eines AB-Systems, J=5,5, H-C(6); B-Teil ist überlagert durch m bei 0,85-1,20; 0,79 (s br., HO); 0,94, 1,04, 1,23 (3 s,  $H_3C-C(1)$ ,  $2H_3C-C(5)$ ); 0,85-1,20 (m, enthält X-Teil eines ABX-Systems, H-C(7), 2H-C(4); 1,95-2,22 (m, 2H-C(3)); 3,49 (AB-Teil des *ABX*-Systems,  $J_1 = 11$ ,  $J_2 = 8$ ,  $J_3 = 7$ ,  $\delta_A = 3,42$ ,  $\delta_B = 3,57$ , *CH*<sub>2</sub>OH); 4,70-4,84 (*m*, H<sub>2</sub>C=C(2)). <sup>13</sup>C-NMR.: 19,4, 29,4, 29,9, (3 qa, H<sub>3</sub>C-C(1), 2 H<sub>3</sub>C-C(5)); 28,2, 35,1 (2 t, C(3), C(4)); 63,6  $(t, CH_2OH); 107.9 (t, H_2C=C(2)); 29.4, 39.3 (2 d, C(6), C(7)); 25.6, 28.8 (2 s, C(1), C(5)); 151.2 (2 s, C(1), C(2)); 151.2 (2 s, C(1)); 151.2 (2 s, C(1)); 151.2 (2 s,$ (s, C(2)) – MS.: 180 ( $M^+$ ,  $C_{12}H_{20}O$ , 29), 165 (6), 162 (29), 149 (34), 147 (69), 137 (17), 136 (40), 124 (37), 121 (100), 119 (51), 107 (63), 105 (46), 95 (40), 93 (63), 91 (66), 79 (37), 67 (20), 55 (26), 43 (23), 41 (51).

#### C<sub>12</sub>H<sub>20</sub>O (180,28) Ber. C 79,44 H 11,18% Gef. C 79,86 H 11,00%

2.3. Reduktion von 9. Zur Lösung von 82 mg (0,35 mmol) 9 in 8 ml Methanol wurden bei ca. -15° im Laufe von 6 Std. unter Rühren 133 mg (3,5 mmol) NaBH<sub>4</sub> gegeben. Nach der Aufarbeitung in Äther wurde das Rohprodukt an SiO<sub>2</sub> (Merck, «reinst») in Essigester/Benzol 1:8 chromatographiert: 39 mg (47%) 12, 10 mg (14%) 13 und 8 mg (11%) 14. (IR\*, 3S\*, 4S\*, 5S\*, 9R\*)-9-Hydroxy-3,6,6-trimethyltricyclo [3.3.1.0<sup>1,3</sup>]nonan-4-carbonsäure-methylester (12): Sdp. 175°/0,05 Torr. - IR.: 3635m, 3580m-3400w br., 3045w, 2955s, 2930s, 2915m S, 2870m, 1731s, 1460m, 1433m, 1388w, 1380w, 1364m, 1308m, 1278m, 1252m, 1227m, 1192s, 1173s, 1160m S, 1100m, 1083m, 1070m, 1042m, 1031m. - 1H-NMR. (360 MHz, CDCl<sub>3</sub>): 0.97, 1.32 (3 s, 2 s überlagert bei 1.32, H<sub>3</sub>C-C(3), 2 H<sub>3</sub>C-C(6); 1,02 (d-artiges m, wird vereinfacht zu  $d \times d$  durch Einstrahlung bei 3,55,  $J_1 = 4,9$ ,  $J_2 = 1,8, H-C(2)$ ; 1,39 (d, J = 4,9, H-C(2)); 1,28-1,36 und 1,54-1,65 (2 m, 2 H-C(7), H-C(8)); 1,68 (HO-C(9)); 2,22 (m,  $w_{1/2}=9.8$ , erscheint als d bei Einstrahlung bei 1,02, J=2.7, H-C(4)); 2,41 (m,  $w_{1/2} = 23,5$ , H-C(8)); 2,85 (s, H-C(5)); 3,35 (m,  $w_{1/2} = 8,8$ , H-C(9)); 3,67 (s, COOCH<sub>3</sub>). -<sup>13</sup>C-NMR.: 23,3, 32,5, 33,6 (3 qa, 3 CH<sub>3</sub>); 51,6 (qa, COOCH<sub>3</sub>); 19,7 (t, C(2)); 37,0, 37,5 (2 t, C(7), C(8)); 50,1, 61,1 (2 d, 2 CH); 80,9 (d, C(9)); 24,3, 34,1, 37,2 (3 s); 175,1 (s, COOCH<sub>3</sub>). - MS.: 238  $(M^+, C_{14}H_{22}O_3, 2)$ , 223 (3), 220 (3), 205 (5), 191 (4), 178 (20), 167 (9), 163 (33), 161 (28), 149 (18), 145 (15), 125 (77), 122 (25), 121 (25), 114 (100), 109 (25), 107 (62), 105 (48), 95 (31), 93 (31), 91 (34), 83 (60), 82 (43), 81 (31), 79 (31), 77 (22), 69 (24), 67 (21), 55 (37), 43 (36), 41 (48).

C14H22O3 (238,32) Ber. C 70,55 H 9,31% Gef. C 70,63 H 9,40%

 $(1 \mathbb{R}^*, 3 \mathbb{S}^*, 4 \mathbb{S}^*, 5 \mathbb{S}^*)$ -4-Hydroxymethyl-3, 6, 6-trimethyltricyclo [3.3.1.0<sup>1,3</sup>]nonan-9-on (13), Sdp. 150°/ 0,02 Torr. – UV. (EtOH) (2,2 mg in 2 ml): 293 (42). – 1R.: 3640m, 3580–3300m br., 3050w, 2970w, 2970s, 2940s, 2910m S, 2870s, 1752s, 1468m, 1458m, 1392m, 1384m, 1370m, 1291m, 1160m, 1144m, 1105m, 1090m, 1072m, 1038s, 1018m. – <sup>1</sup>H-NMR. (360 MHz, CDCl<sub>3</sub>): 1,07, 1,13, 1,32 (3 s, H<sub>3</sub>C-C(3), 2 H<sub>3</sub>C-C(6)); 1,23 (d×d, J<sub>1</sub>=6,3, J<sub>2</sub>=2,0, H-C(2)); 1,52 (d, J=6,3, H-C(2), überlagert durch m bei 1,42-1,54); 1,42-1,54, 1,71-1,88 und 2,34-2,45 (3 m, H-C(4), 2 H-C(7), 2 H-C(8)); 1,61 (s, HO); 1,94 (s, H-C(5)); 3,29-3,44 (m, CH<sub>2</sub>OH). – <sup>13</sup>C-NMR.: 21,9, 28,4, 28,8 (3 *qa*, 3 H<sub>3</sub>C); 26,6, 27,8, 37,8 (3 t, 3 H<sub>2</sub>C); 62,4 (t, CH<sub>2</sub>OH); 44,0 (d, C(4)); 69,0 (d, C(5)); 19,8, 41,0, 41,7 (3 s); 216,3 (s, C(9)). – MS.: 208 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>2</sub>, 5), 193 (8), 190 (8), 177 (9), 175 (5), 165 (15), 162 (8), 152 (9), 149 (40), 147 (28), 137 (17), 123 (40), 122 (45), 109 (40), 107 (74), 106 (35), 105 (38), 95 (43), 93 (100), 91 (62), 83 (32), 81 (32), 79 (35), 77 (42), 69 (45), 67 (26), 55 (34), 43 (21), 41 (51).

#### C<sub>13</sub>H<sub>20</sub>O<sub>2</sub> (208,29) Ber. C 74,96 H 9,68% Gef. C 74,46 H 9,66%

 $(1R^*, 3S^*, 4S^*, 5S^*, 9R^*)$ -4-Hydroxymethyl-3, 6, 6-trimethyltricyclo[3.3.1.0<sup>l,3</sup>]nonan-9-ol (14). Smp. 154-155° (aus Heptan). – IR. (CHCl<sub>3</sub>): 3620s, 3040w, 3005m, 2955s, 2935s S, 2910s S, 2895s, 2870s, 1465m, 1390m, 1385m, 1362w, 1320w, 1160w, 1140w, 1100m, 1084s, 1060m, 1032m, 1020m, 996m, 950w, 920w. – <sup>1</sup>H-NMR. (CDCl<sub>3</sub>): 0,90–1,04 (Signal überlagert von s bei 0,98, vermutlich  $d \times d$ , H–C(2)); 0,98, 1,23, 1,28 (3 s, H<sub>3</sub>C–C(3), 2 H<sub>3</sub>C–C(6)); 1,55 (s, 2 HO); 1,28–1,80 und 2,20–2,47 (7 H); 3,26 (d, J=3,5), 3,46 (s) und 3,54 (d, J=1,5, zusammen 3 H). – <sup>13</sup>C-NMR. (CDCl<sub>3</sub>, unter Zusatz von DMSO-d<sub>6</sub>): 23,5, 32,5, 33,8 (3 qa, 3 H<sub>3</sub>C); 19,8 (t, C(2)); 35,3, 37,0 (2 t, 2 H<sub>2</sub>C); 62,0 (t, CH<sub>2</sub>OH); 48,2, 59,8 (2 d, 2 HC); 79,4 (d, C(9)); 21,8, 34,2, 35,8 (3 s). – MS.: 210 ( $M^+$ , C<sub>13</sub>H<sub>22</sub>O<sub>2</sub>, 1), 192 (4), 179 (8), 177 (10), 163 (16), 161 (19), 159 (8), 149 (16), 147 (8), 136 (15), 125 (100), 123 (75), 121 (20), 119 (18), 109 (19), 108 (17), 107 (65), 105 (40), 95 (49), 93 (35), 91 (41), 81 (42), 79 (35), 77 (25), 69 (34), 68 (88), 67 (35), 55 (40), 43 (35), 41 (43).

# C13H22O2 (210,31) Ber. C 74,24 H 10,54% Gef. C 74,10 H 10,46%

2.4. Veresterung von 12 mit p-Nitrobenzoylchlorid. Eine Lösung von 30,3 mg (0,13 mmol) 12 in 1 ml Pyridin wurde mit 27,8 mg (0,15 mmol) p-Nitrobenzoylchlorid versetzt und 2 Tage bei 80° gerührt. Das Reaktionsgut wurde mit Äther verdünnt, mit ges. wässeriger CuSO<sub>4</sub>-Lösung gewaschen und in Äther aufgearbeitet. Die Chromatographie an SiO<sub>2</sub> in Äther/Pentan 1:10 ergab 30 mg (83%) (*I*R\*, 3 S\*, 4 S\*, 5 S\*, 9 R\*)-3, 6, 6-Trimethyl-9-(p-nitrobenzoyloxy)tricyclo[3.3.1.0<sup>1.3</sup>]nonan-4-carbonsäuremethylester (15), Smp. 162-163° (hellgelbe Kristalle aus Äther). - UV. (Äther) (0,051 mg in 5 ml): 257,5 (20900). - IR. (CHCl<sub>3</sub>): 3030w, 2995w S, 2955m, 2905m S, 2870m, 1725s, 1608m, 1527s, 1460m, 1433m, 1408w, 1389w, 1382w, 1365m, 1349s, 1318m, 1299s, 1282s, 1190m S, 1175m, 1154m, 1115s, 1102s, 1020m, 1013m, 939w, 888w, 870m, 860w, 840m. - <sup>1</sup>H-NMR. (CDCl<sub>3</sub>): 1,05, 1,31, 1,37 (3 s, H<sub>3</sub>C-C(3), 2 H<sub>3</sub>C-C(6)); 1,22 (d×d, J<sub>1</sub>=6, J<sub>2</sub>=2, H-C(2)); 1,42-1,80 und 1,90-2,38 (2 m, 5 H); 2,54 (m, w<sub>1/2</sub>=5, H-C(4)); 2,98 (s, H-C(5)); 3,69 (s, COOCH<sub>3</sub>); 4,35 (d, J=3,5, H-C(9)); 7,26 (*AB*-System, J=9,  $\delta_A$  = 7,21,  $\delta_B$  = 7,31, 4 arom. H). - MS.: 387 (*M*<sup>+</sup>, C<sub>21</sub>H<sub>25</sub>NO<sub>6</sub>, 3), 328 (8), 327 (10), 274 (19), 237 (13), 220 (12), 219 (11), 205 (14), 177 (23), 164 (13), 161 (29), 159 (13), 151 (27), 150 (100), 149 (12), 145 (11), 134 (11), 120 (27), 105 (19), 104 (23), 93 (11), 76 (13), 69 (15), 55 (10), 41 (14).

 $C_{21}H_{25}NO_6$  (387,42) Ber. C 65,10 H 6,50 N 3,62% Gef. C 65,13 H 6,51 N 3,55%

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETHZ (Leitung: D. Manser) ausgeführt. Die Aufnahme der NMR.-Spektren verdanken wir Frl. B. Brandenberg und Herrn K. Hiltbrunner (Leitung des NMR.-Service: Prof. Dr. J. F. M. Oth); die 360 MHz <sup>1</sup>H-NMR.-Spektren wurden von Herrn A. Eugster, Institut für Molekularbiologie und Biophysik der ETHZ, aufgenommen. Für die Messung der Massenspektren danken wir Frau L. Golgowski (Leitung des MS.-Service: Prof. Dr. J. Seibl).

#### LITERATURVERZEICHNIS

- [1] 111. Mitt.: A. P. Alder, H. R. Wolf & O. Jeger, Helv. 63, 1833 (1980).
- [2] B. Frei, W.B. Schweizer, H.R. Wolf & O. Jeger, Rec. Trav. Chim. Pays Bas 98, 271 (1979).
- [3] B. Frei, H. Eichenberger, B. von Wartburg, H.R. Wolf & O. Jeger, Helv. 60, 2968 (1977).
- [4] B. Frei, H.R. Wolf & O. Jeger, Helv. 62, 1645 (1979).
- [5] W.G. Dauben, L. Schutte, R.E. Wolf & E.J. Deving, J. Org. Chem. 34, 2512 (1969).
- [6] G.M. Sheldrick, 'SHELX 76, Program for Crystal Structure Determination', University of Cambridge, England.
- [7] J. M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson & S.R. Hall, 'The X-Ray System Version of June 1972', University of Maryland, College Park, Maryland.
- [8] J. D. Dunitz & P. Seiler, Acta Crystallogr. B 29, 589 (1973).
- [9] C.K. Johnson, ORTEP-Report ORNL-3794 (1965), Oak Ridge National Laboratory, Tennessee.
- [10] Programm PLUTO, Crystallographic Data Centre, University Chemical Laboratory, Cambridge, England.
- [11] B. Frei, G. de Weck, K. Müllen, H. R. Wolf & O. Jeger, Helv. 62, 553 (1979).
- [12] K. N. Houk, Chem. Rev. 76, 1 (1976).
- [13] W.G. Dauben, D.G. Lodder & J. Ipaktschi, Fortschr. Chem. Forsch. 54, 73 (1975).
- [14] D. R. Morton & N.J. Turro, Adv. Photochem. 9, 197 (1974).
- [15] W.D. Stohrer, P. Jacobs, K.H. Kaiser, G. Wiech & G. Quinkert, Fortschr. Chem. Forsch. 46, 181 (1974).
- [16] W.F. Erman, J. Am. Chem. Soc. 89, 3829 (1967).
- [17] H. D. Scharf & W. Kuster, Chem. Ber. 104, 3016 (1971).
- [18] D. Do Khac Manh, M. Fétizon & J. P. Flament, Tetrahedron 31, 1897 (1975).